If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+28x-60=0
a = 5; b = 28; c = -60;
Δ = b2-4ac
Δ = 282-4·5·(-60)
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8\sqrt{31}}{2*5}=\frac{-28-8\sqrt{31}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8\sqrt{31}}{2*5}=\frac{-28+8\sqrt{31}}{10} $
| 1300=10p | | 10x–3x2–4=0 | | 10x–3x^2–4=0 | | 3x^2-22x+65=30 | | 3-11x=-8x | | 3x^2-22x-65=30 | | 16x-32-x+3=29 | | 1-x=x-9 | | 7w-6=3(w+4)=4w | | 7w-6=7w+12 | | 6m+48=2m+8 | | 3w+20=8w | | (3x)(x^2)-1083=0 | | (x)(3x)=1083 | | K-7=-11+2k | | (x)(x+5)=234 | | 2x+2=10x-14 | | 5x-2+7=9 | | 18-4r=2(1+2r) | | 5(y-4)=5 | | x^2-1,6=0 | | x-3-4=-10 | | 30+10x=-20 | | 9/30=6/x | | |x+6|+8=7 | | 4|6-5/4x|+7=43 | | y^2-10y-20=0 | | z=2+1/2 | | z+1/4=11/4 | | 3(2b+2)-3=0 | | 6(2n+3)=9(7n+1)+5 | | -6(4x-4)+2=-24x+26 |